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Social interactions are a profound aspect of human life. 
Through social interactions, people solve problems, 
generate innovative ideas, and foster a sense of mean-
ing that is unattainable in isolation. But poor social 
interactions can also lead to misunderstanding, dis-
agreement, or worse. It is both practically and theoreti-
cally essential to understand what makes an interaction 
satisfying and successful rather than frustrating or 
counterproductive.

Psychologists frequently study socializing in con-
trolled laboratory experiments using simple tasks or 
imaginary scenarios. By reducing a social interaction 
to its most fundamental components, researchers aim 
to uncover the psychological building blocks of suc-
cessful interactions. This approach has revealed foun-
dational insights into how and why people think about 
other people (e.g., attitudes, cognitive biases, theory of 
mind) but does not explain how people think with 
other people. The distinction is important because cog-
nition enacted with others is different from cognition 

enacted alone (Dingemanse et  al., 2023; Schilbach 
et al., 2013).

An “interaction science” approach instead investigates 
socializing using naturalistic scenarios, such as uncon-
strained conversations, group decision-making, and com-
plex problem-solving. This work reveals that the magic 
of a social interaction lies not in the sum of its parts but 
in the dynamic, emergent patterns between people (Asch, 
1952; Wheatley et al., 2024). Despite the complexity of 
social interaction, these patterns are structured and 
quantifiable. This approach enables researchers to test 
predictions about emergent interdependent dynamics 
and how different types of interdependence influence 
interaction outcomes. In this article we discuss the logic 
of interaction science and empirical findings regarding 
social interdependence and make recommendations for 
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Abstract
Social interactions are a ubiquitous part of human life. They are also complex and dynamic, posing a challenge for 
traditional psychology methods. This article provides an overview of a dynamic systems approach to the study of social 
interactions that manages this complexity and enables the quantification of interdependence between people. We also 
discuss key empirical findings that demonstrate how different forms of interdependence and interaction dynamics 
shape social outcomes. Last, we highlight the utility of this approach for advancing theories of social behavior and 
practical application. By adopting this dynamic systems approach, researchers can gain a deeper understanding of 
the patterns underlying social interactions and test hypotheses about the mechanisms driving human connection and 
coordination.

Keywords
conversation, social interaction, dynamic systems, social connection

https://us.sagepub.com/en-us/journals-permissions
http://www.psychologicalscience.org/cdps
mailto:dtamir@princeton.edu
http://crossmark.crossref.org/dialog/?doi=10.1177%2F09637214251323598&domain=pdf&date_stamp=2025-04-15


2	 Burns et al.

how researchers can apply these methods to test theories 
of social behavior and cognition.

Social Interaction as an Interdependent 
Dynamic System

Imagine two roommates meeting each other for the first 
time, grabbing coffee, and discussing their interests, 
experiences, and preferences. This is mundane as far as 
human experience goes but nonetheless psychologically 
rich. Each roommate’s mental state is shaped by past 
experiences, current motives, and external influences—
including their interaction partner. These factors are 
numerous and interact in complex ways, changing from 
moment to moment. A goal to make a good impression 
can shift to a goal of negotiating who will get the bigger 
bedroom; emotions fluctuate; opinions of the other per-
son are updated as information is shared. The bidirec-
tional nature of this interaction also means that changes 
in one person can induce changes in the other, prompt-
ing further changes in the first partner, creating a deep 
feedback loop (Lehmann et al., 2024).

The multifactorial, dynamic nature of social interac-
tion may appear too complex to model quantitatively. 
However, a dynamic (or dynamical) systems approach 
provides a framework to manage these complexities 
productively (Butler, 2011; Vallacher & Nowak, 1997). 
A dynamic system is any set of interdependent elements 
that change over time. This includes seasonal weather, 
a flock of birds, and human physiological rhythms. The 
behavior of dynamic systems can vary substantially, so 
the goal of dynamic systems analysis is not to predict 
specific system states but to uncover the system’s inter-
nal mechanisms and organizational structure driving 
this variation.

Applying this approach to social interactions departs 
from traditional social-psychological analyses in three 
key ways. First, the social interaction as a whole is 
treated as the unit of analysis rather than the individuals 
within it. Second, variability in the system, even under 
consistent external conditions, is treated as meaningful 
behavior driven by intrinsic system mechanisms rather 
than dismissed as measurement noise. Last, despite the 
variety in system behaviors, the relationships among 
system components are quantifiable. Rather than 
explaining utterances or gestures of each individual, 
the key focus of dynamic systems analysis is the orga-
nization of the social system—how individuals vary in 
relation to each other. The type and strength of this 
interpersonal interdependence produces key outcomes 
of the interaction. In this way, cooperation, team per-
formance, and meaning-making are emergent phenom-
ena that are mutually constructed by the members of 
the system rather than properties of each individual 

separately (Linell, 2014; Stolk et al., 2022). Researchers 
can develop meaningful theories of social interaction 
by focusing on variables influencing the type and 
strength of this system-level organization rather than 
its individual components.

For example, imagine we want to test whether each 
roommate’s affect influences how much they like each 
other after their first meeting. A traditional social- 
psychological analysis may focus on the average valence 
felt by both partners during the conversation to predict 
their mutual liking. This approach overlooks important 
aspects of the interaction. The same average valence 
could be calculated from steady or varying affect across 
time or from equal or divergent levels of positivity 
between the roommates. A single average valence value 
thus cannot distinguish between different interaction 
processes that may lead to the same outcome. A 
dynamic systems approach guides us to consider how 
the dynamics of affect in one person relate to the 
dynamics in the other and whether the kind and level 
of interdependence predict mutual liking.

Guided by this approach, researchers have identified 
distinct dynamics that characterize social-interaction 
systems. We describe these key findings next.

On the Same Wavelength: Synchrony 
as a State of Optimal Interaction?

Many social interactions are characterized by people’s 
tendency to mirror one another’s behaviors, physiology, 
and neural activity (Lotter et al., 2023; Mayo et al., 2021; 
Mogan et  al., 2017). This phenomenon is most com-
monly referred to as “synchrony.” Although some 
researchers have used other terms (e.g., “alignment,” 
“coupling,” “coherence,” “coordination,” “entrainment”), 
and some have used “synchrony” as a label for other 
operationalizations of bivariate relationships, we advo-
cate for using the term “synchrony” only for its most 
common and specific definition to distinguish it from 
other dynamics. We define synchrony as fluctuations 
in one person’s time data series that vary simultane-
ously and in the same way as those of another person. 
Formally, synchrony denotes a particular mathematical 
relationship between one person’s data (e.g., thoughts, 
feelings, words, movements, physiology, brain activity), 
A, and another’s, B, described by an identity function 
in which At = Bt (Fig. 1a). This means the fluctuations 
in one person’s time series vary at the same time and 
in the same way as the other person’s.

Synchrony can manifest in various forms, including 
shared variations in one-dimensional, continuous, 
quantitative data such as skin conductance; similarities 
in multidimensional patterns such as brain activity; or 
matches in categorical classifications such as emotions, 
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gestures, or conversation topics. What matters is that 
the state of one individual is mirrored simultaneously 
in the other. Synchrony can also manifest at different 
time scales and levels of abstraction, from moment-to-
moment actions to long-term alignment in personality 
traits. The degree of synchrony between A and B is 
quantified by how much variation in A over time is 
explained by B, akin to a classic Pearson correlation 
(Nastase et al., 2019).

Synchrony is widespread and often predicts positive 
outcomes such as prosocial behavior, bonding, inter-
personal understanding, and positive affect (Mogan 
et al., 2017). Thus, understanding why people synchro-
nize has become a major research objective. To explain 
its mechanistic role, prominent theories draw on the 

concept of predictive coding, in which brain activity 
reflects active predictions about the environment in 
addition to sensory processing (Huang & Rao, 2011). 
In the social world, neural predictions of other people 
include representations of their likely mental states and 
behaviors (Koster-Hale & Saxe, 2013; Thornton & Tamir, 
2024). Theories of synchrony thus posit that when both 
interaction partners accurately predict each other, their 
neural activity will coincide (Kingsbury et  al., 2019). 
This leads to, and is enabled by, synched physiological 
states and behaviors (Mayo & Shamay-Tsoory, 2024). In 
this way, synchrony can be viewed as a state of optimal 
social integration; people should endeavor to “get on 
the same wavelength.” In the case of our roommate 
example, synchronization could indicate successful 
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Fig. 1.  Methods for quantifying dyadic dynamics. Numerous factors determine a person’s dynamic psychological and behavioral patterns (At) 
during a social interaction, including the behavior of other people (Bt), past experience (At−1), and current intrinsic motivations (It). But the 
functional relationship ( f ) between At and Bt can take different forms. This includes (a) synchrony, in which both individuals vary simultane-
ously in the same way across time t; (b) metastable synchrony, in which the strength of synchrony xt varies across time; (c) recurrence, in 
which the value of At echoes the value of B from some previous time (t − n); and (d) complementarity, in which the value of At depends on 
Bt in some nonlinear way but is not necessarily the same value.
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understanding of one another’s thoughts, feelings, and 
goals while getting to know each other.

When Two Minds Are Greater Than 
One: Coordination Beyond Synchrony

Synchrony dominates the literature on dynamic social 
interactions. However, it is not the sole type of interde-
pendence. Synchrony is not universally observed, and 
even when it is, the level of synchrony is often low. 
Additionally, a social interaction might have low levels of 
synchrony yet still be highly cooperative, generative, and 
connective. These realities suggest we need to consider 
other kinds of dynamics beyond synchronization. Below, 
we discuss types of nonlinear interdependence between 
people that have been observed in interaction.

Metastable synchrony

The concept of “metastable synchrony” is a slight 
adjustment to the basic synchrony model. In this type 
of relationship, the strength of synchrony between indi-
viduals fluctuates throughout the interaction (Fig. 1b). 
These fluctuations may occur as individuals prioritize 
different goals at different times, occasionally deem-
phasizing the drive to predict their partners’ minds in 
favor of other objectives. For example, people often 
seek novelty in their interactions in addition to syn-
chrony (Ravreby et  al., 2022). Our roommates might 
initially synchronize by discussing predictable small 
talk such as the weather and then explore more novel 
topics such as recounting an unexpectedly humorous 
situation. Novelty requires that one person steer the 
conversation in an unanticipated direction rather than 
converging with their partner’s previous location, tem-
porarily desynchronizing partners. Yet people cannot 
leave their partner entirely behind—it is crucial to peri-
odically mentalize about whether one’s partner under-
stands the new direction. This dynamic psychological 
balancing act between novelty and cohesion can shape 
how much people adapt to each other and synchronize 
moment to moment.

Traditional correlation-based measures of synchrony 
are calculated as a single average score across partners’ 
entire time series. This approach cannot distinguish 
consistently moderate synchrony from metastable varia-
tion, in which periods of high synchrony alternate with 
periods of divergence. Instead, temporally resolved 
measures of synchrony can identify fluctuations in syn-
chrony across time. Mathematical tools that provide 
such answers include sliding window correlation, phase 
synchrony (Glerean et al., 2012), or wavelet coherence 
(Zhang et al., 2020). These analytic methods quantify 
synchrony moment to moment, enabling researchers to 
probe whether sustained average synchrony or flexible 

switching between mutual attention and individually 
driven exploration is more important for good out-
comes. Studies of dynamics in eye gaze (Mayo & 
Gordon, 2020), foraging behavior (Laroche et al., 2024), 
pupillometry (Wohltjen & Wheatley, 2021), and neural 
fluctuations ( Jiang et al., 2012) during naturalistic inter-
actions suggest that metastability can enhance bonding 
and task performance. As relationships become more 
secure, periods of divergence may become more fre-
quent relative to periods of synchrony because of less 
uncertainty about one’s partner or lower need to 
actively model them (Nguyen et al., 2024; Speer et al., 
2024).

Recurrence

Synchrony and metastable synchrony identify when two 
individuals express the same states simultaneously. 
However, partners also mimic each others at noncon-
current times (Fig. 1c), a phenomenon called “recur-
rence.” A restrictive version of recurrence is when there 
is a consistent lag between one individual’s signal and 
another such that they would be synchronized if this 
lag were resolved. This has been identified in neural 
patterns between a teacher and learner where the 
strength of lagged synchrony between a teacher’s and 
learner’s brain patterns predicts effective learning 
(Zheng et al., 2018), reflecting either the teacher antici-
pating a later signal in the student or the student fol-
lowing the teacher. Recurrence also occurs at variable 
time shifts, when interaction partners influence each 
other’s behavioral repertoires or the probabilistic map-
pings between situations and reactions. This is evident 
in linguistic utterances during conversation: Vocabulary 
and grammar used by one partner shapes that of the 
other, refining what is talked about and how. This 
reduces the uncertainty of semantic meaning between 
people (Pickering & Garrod, 2004). Nonverbal behav-
iors may also recur. For instance, if one roommate uses 
particular facial expressions to convey a certain mean-
ing, the other roommate may adopt these same gestures 
later to increase communication efficiency.

Tools such as recurrence quantification analysis can 
identify this dynamic by quantifying the proportion of 
signals from one person that are repeated by another 
at any point by another (or within a certain time lag; 
Duong et al., 2024). This approach has revealed inter-
personal influences in facial expressions (Varni et al., 
2020) and language (Dale & Spivey, 2006).

Complementarity

The dynamics discussed above describe how interacting 
people align their internal states and behaviors. However, 
there are also situations in which differentiation, rather 



Current Directions in Psychological Science XX(X)	 5

than alignment, is beneficial. In these cases, we would 
expect interdependence in the form of complementarity 
rather than matching, where one person’s state influ-
ences the probability distribution of what separate state 
the other person might experience (Fig. 1d).

For example, imagine our roommates now have an 
established relationship, with shared mental models for 
effectively living with each other. It is cleaning day at 
the apartment, and one roommate starts vacuuming. 
Rather than grabbing another vacuum to mimic this 
behavior, the second roommate scrubs the kitchen to 
enhance cleaning efficiency. In this way, the roommates 
align on the more superordinate goal of household 
maintenance but use different concurrent actions to 
achieve it (Goldstone et al., 2024). In another example, 
if one roommate is having a bad day, the other mirror-
ing this negative state could lead to rumination and 
relationship dissatisfaction, whereas resisting emotional 
contagion could enable them to help their roommate 
out of the slump.

Quantifying complementarity requires detecting a 
nonlinear dependency between one person’s state and 
another’s. Metrics such as mutual information do so 
using probability. This method asks how much the 
value of one person’s state influences the probability 
distribution of another person’s state (Timme & Lapish, 
2018). Mutual information is therefore a flexible method 
for detecting traditional cause-and-effect relationships 
between specific interpersonal states (e.g., Person A is 
likely to feel defensive when Person B feels angry), 
synchrony (e.g., any emotion in Person A is likely to 
be mirrored in Person B), and general complementarity 
(e.g., any emotion in Person A is likely to have a com-
plement in Person B). The differences between these 
cases can be identified by the strength of the mutual 
information score (general complementarity/synchrony 
across all possible states would result in higher mutual 
information) and by investigating which states are most 
likely to be paired.

Hidden Markov models, a statistical method used to 
detect reliable and repeating state sequences within a 
multidimensional system, are another technique for this 
purpose (Visser, 2011). By treating multiperson con-
figurations of the whole social unit as system states, 
one can find which and how many interpersonal role 
assortments reliably occur and whether the frequency 
of these particular dyadic states matters for outcomes. 
For example, particular listening-speaking dyadic states 
in patient-therapist interactions have been identified as 
relevant for depression recovery (Hale & Aarts, 2023). 
More generally, when particular state matching is not 
observed, the concurrent timing of state switches 
between interaction partners may indicate their level 
of sensitivity to each other.

Utility of Interpersonal Dynamics  
for Advancement in Psychology

In this article, we have described a dynamic systems 
approach for studying social interactions. Although this 
approach is not new (Vallacher & Nowak, 1997), it 
remains relatively uncommon among social psycholo-
gists despite its advantages for describing psychological 
processes in naturalistic interactions. We have also clari-
fied different types of interdependence that structure 
interpersonal behavior and identified associated tools 
for measuring them. This approach helps researchers 
describe psychological processes manifesting in natural-
istic interactions, improving our understanding of what 
it means to be a social species. This approach is also 
useful for inference and theory building. By formalizing 
and quantifying these dynamics, researchers can develop 
precise computational theories of the cognitive processes 
facilitating social success (Mayo & Shamay-Tsoory, 2024) 
that are more falsifiable than verbal theories.

For example, one area in which dynamic systems 
approaches are advancing theoretical development is 
in the study of social learning. Prior work suggests that 
a learner’s success depends on their attention, motor 
coordination, and theory-of-mind capacities. However, 
less is known about how a teacher and learner mutu-
ally adapt to and integrate each other’s knowledge (Pan 
et al., 2022). Investigating the level and type of inter-
personal dynamics in interactive learning allows 
researchers to examine how individual capacity versus 
environmental factors versus group adaptability matters 
for successful learning, whether effective teachers lead 
or react to learners, when low-level mimicry turns into 
high-level understanding, innovation, and so on.

The measurement of interdependence dynamics may 
also be useful in practice, such as for the treatment of 
social dysfunction in disorders such as autism and bor-
derline personality disorder. Although much of psychi-
atric theory assumes the origination of social problems 
is within a patient’s own cognitive functioning, an alter-
native perspective characterizes social dysfunction as an 
interpersonal misattunement—a disruption in the initia-
tion or maintenance of interpersonal dynamics that facili-
tate social goals (Bolis et al., 2022). This approach shifts 
the focus from the individual to the dyad and suggests 
that patient distress may arise from collective dysfunction. 
Effective intervention should thus prioritize enhancing 
the collective functioning of patients and their social 
partners—treating the patient alone is not enough.

Additional applications include developing artificial 
agents capable of seamless collaboration with humans 
in multiagent tasks. Rather than programming these 
agents to produce the vast space of possible actions via 
extensive decision logic, researchers could design the 
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agents to adapt to human partners’ behaviors through 
particular dynamics. This may facilitate more efficient 
cooperative agents. Such efforts have already shown 
promise in motor coordination (Dumas et al., 2014) and 
virtual shepherding tasks (Nalepka et al., 2019).

Social interactions can be a source of enjoyment, 
innovation, achievement, or distress. They also represent 
a crucial frontier in the scientific quest to understand 
human psychology. We believe the key to this domain 
lies in the dynamics between people. By understanding 
these processes, researchers can develop new theories 
and applications to enhance communication, collabora-
tion, and connection in real-world interactions.
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