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Abstract

Functional near-infrared spectroscopy (fNIRS) offers a portable, cost-effective alternative to functional magnetic resonance imaging 
(fMRI) for noninvasively measuring neural activity. However, fNIRS measurements are limited to cortical regions near the scalp, miss-
ing important medial and deeper brain areas. We introduce a predictive model that maps prefrontal fNIRS signals to whole-brain 
fMRI activity during movie-watching. By aligning neural responses to a common audiovisual stimulus, our approach leverages shared 
dynamics across imaging modalities to map fNIRS signals to broader neural activity patterns. We scanned participants with fNIRS and 
utilized a publicly available fMRI dataset of participants watching the same TV episode. The model was trained on the first half of the 
episode and tested on a held-out participant watching the second half to assess cross-individual and cross-stimulus generalizability. 
The model significantly predicted fMRI time courses in 66 out of 122 brain regions, including areas otherwise inaccessible to fNIRS. It 
also replicated intersubject functional connectivity patterns and retained semantic information about the movie content. The model 
generalized to an independent dataset from a different TV series, suggesting it captures robust cross-modal mappings across stimuli. 
Our publicly available models enable researchers to infer broader neural dynamics from localized fNIRS data during naturalistic tasks.
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Introduction
Functional magnetic resonance imaging (fMRI) offers the spatial 
resolution to study activity of specific brain regions while measur-
ing whole-brain activity (Bandettini 2020). However, fMRI studies 
are constrained to tasks that can be conducted in a confined envi-
ronment while participants lie still in the magnetic resonance 
imaging (MRI) scanner. fMRI is thus not conducive for studying 
many naturalistic behaviours, such as learning in a classroom 
environment, freely moving in a physical space, or brainstorm-
ing in groups (Shamay-Tsoory and Mendelsohn 2019). The noise 
generated by the scanner and the restriction on movement is also 
challenging for children, the elderly, and individuals with sen-
sory sensitivities (Lueken et al. 2011, Greene et al. 2016, Hausman 
et al. 2022). Furthermore, the high costs associated with fMRI 
scanning limit the feasibility of large-scale studies that provide 

sufficient statistical power to study individual differences (Grady 
et al. 2021).

Functional Near-Infrared Spectroscopy (fNIRS) is emerging as 
a promising alternative (Burns et al. 2019, Pinti et al. 2020). Simi-

lar to fMRI, fNIRS measures neural activity indirectly through the 

hemodynamic response (Huppert et al. 2006, Yücel et al. 2017), 
and prior studies have found high temporal and spatial correla-

tion in the activation profile measured by fNIRS and fMRI during 

the same task (Cui et al. 2011, Sato et al. 2013, Noah et al. 2015, 

Liu et al. 2017). Relative to fMRI, fNIRS is portable, less expensive, 

and more tolerant of movement. These advantages have made 

it suitable for studying behaviour in naturalistic settings, includ-
ing face-to-face social interactions (Suda et al. 2010, Hirsch et al. 
2021), affective touch (Bennett et al. 2014), actors in a theatre per-
formance (Hamilton et al. 2018), and physical activity (Byun et al. 
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2014, Ono et al. 2015). fNIRS, however, is limited to measuring 
activity in cortical regions near the scalp (Yücel et al. 2017).

How can researchers use fNIRS to study regions beyond the 
cortical surface? One potential strategy is to ‘infer’ brain activity 
using predictive models that map fNIRS activity onto fMRI activity 
by leveraging functional correlations between brain regions (Liu 
et al. 2015, Balters et al. 2023). For example, using simultaneous 
fNIRS-fMRI, Liu et al. (2015) demonstrated that fMRI activity in 
deep brain regions could be predicted from fNIRS activity mea-
sured at the scalp. Despite the success of these models, it remains 
unclear how well they would perform when the fNIRS and fMRI 
data are derived from different groups of subjects. This is a crucial 
consideration, as it is not always feasible to collect simultane-
ous fNIRS and fMRI data from the same participant. Furthermore, 
previous models have been trained on data collected while par-
ticipants performed cognitive tasks consisting of repeated trials 
from a small number of experimental conditions (Liu et al. 2015, 
Balters et al. 2023), and may not generalize to the naturalistic 
tasks for which fNIRS holds the greatest promise. Indeed, natu-
ralistic behaviours, such as having a spontaneous conversation, 
tap into multiple cognitive processes simultaneously and elicit a 
wider range of neural responses (Matusz et al. 2019). This simulta-
neous activation of diverse and overlapping brain networks may 
result in more complex and distributed neural patterns, making 
it unclear whether predictive models trained on traditional tasks 
would generalize across different naturalistic behaviours.

The goal of this study is to develop a predictive model 
that maps fNIRS signals to continuous whole-brain fMRI neural 
dynamics during movie-watching. Our study advances past work 
in two significant ways: first, we train a model that generalizes 
across individuals, addressing the challenge of applying predic-
tive models to data from different participants; second, we train 
and test our predictive model on neural activity collected during 
a naturalistic task, movie-watching, which more closely mirrors 
the complexity and cognitive demands of everyday experiences. 
We first used fNIRS to measure participants’ neural activity as 
they watched a TV episode. Due to a limited number of avail-
able optodes, optodes were placed to optimize coverage of the 

prefrontal cortex (PFC), a decision that we had also made in our 
earlier work (Burns et al. 2019, Lyu et al. 2024).

We targeted the PFC due to extensive prior work implicating 

the region in processing complex dynamic audiovisual narratives 

(Baldassano et al. 2018, Rowland et al. 2018) and higher-order 

cognition more broadly (Friedman and Robbins 2022). Further-
more, the PFC is a heterogeneous structure composed of multiple 

areas that are part of distinct large-scale functional brain net-
works (Menon and D’Esposito 2022). For example, the dorsome-
dial PFC and dorsolateral PFC are functionally coupled with the 
default mode network and frontoparietal network, respectively. 
Our model can thus leverage the diverse connections of the PFC 
to infer neural dynamics across the brain. From a practical per-
spective, the fNIRS signal in the PFC is often cleaner due to easier 
access and thinner hair coverage relative to other parts of the 
scalp.

Using a publicly available fMRI dataset where participants 
watched the same TV episode, we adapted a principal component 
regression approach to train a model that predicts whole-brain 
fMRI data from fNIRS data. The model was trained on the first 
half of the episode and tested on the second half of the episode in 
a leave-one-participant-out (LOO) approach. In other words, the 
model was tested on data from a participant and stimuli that it 
was not trained on, which allowed us to assess cross-individual 
and cross-stimulus generalizability. To evaluate the information 

preserved in the fNIRS-to-fMRI mapping, we used textual embed-
dings of the TV episode to build neural encoding models (Huth 
et al. 2016, Goldstein et al. 2022, Caucheteux et al. 2023) that 
mapped semantic information onto fMRI activity. The successful 
generalization of the encoding models across real and predicted 
fMRI activity would suggest that fNIRS-fMRI mapping retained 
information about the episode’s semantic content. Altogether, our 
study introduces a novel approach that combines the flexibility of 
fNIRS with the spatial coverage of fMRI, offering new possibilities 
for studying brain dynamics in naturalistic contexts.

Materials and methods
Participants
Thirty individuals were recruited for the fNIRS study from the 
University of Chicago community and provided informed consent 
prior to the study. Experimental procedures were approved by the 
University of Chicago Institutional Review Board. One participant 
was excluded because of poor data quality (see fNIRS data acqui-
sition), yielding an effective sample size of 29 participants (15 
females, 13 males, 1 nonbinary; age: M = 19.69, SD = 0.93).

Stimuli
Participants were scanned using fNIRS as they watched a 48 min 
6 s segment from an episode of the BBC television series ‘Sher-
lock’. The stimulus was chosen due to the availability of a publicly 
available fMRI dataset of participants watching the same segment 
(see fMRI dataset). The segment was divided into two runs (Run 
1: 23 min; Run 2: 25 min 6 s), and a short cartoon was padded to 
the beginning of each run to mitigate the confounding effects of 
stimulus-onset.

fNIRS data acquisition
fNIRS data were collected using a NIRSport2 fNIRS device (NIRx 
Medical Technologies) with a sampling rate of 10.1725 Hz at wave-
lengths of 760 and 850 nm. The fNIRS device layout consisted of 
20 channels composed of 8 source optodes and 7 detector optodes 
using the unambiguously illustrated (UI) 10/10 external position 
system (Jurcak et al. 2007). Raw fNIRS data were preprocessed in 
MATLAB using custom scripts that utilized the Homer2 package 
(Huppert et al. 2009). Preprocessing steps are detailed in the Sup-
plementary Methods and included adjusting for hemodynamic 
lag, removal of noisy channels, bandpass filtering (0.005–0.5 Hz) to 
remove physiological noise, and removal of motion artefacts using 
targeted principal component analysis (PCA) (Yücel et al. 2014). 
Optical density signals were converted to changes in oxygenated 
(HbO), deoxygenated (HbR), and total (HbT) haemoglobin concen-
trations following the modified Beer–Lambert law (ppf value = 6). 
Data were z-scored separately for each run and each partici-
pant. We used the HbO time courses for analyses because of the 
stronger signal amplitude and higher correlation to fMRI blood-
oxygen-level-dependent (BOLD) signals (Strangman et al. 2002, 
Tong and Frederick 2010, Duan et al. 2012). HbO time courses 
were resampled to match the sampling frequency of the fMRI 
dataset (TR = 1.5 s). Participants with ≥ 3 channels with missing 
values (i.e. 15% of channels) in either run were excluded from 
subsequent analysis (n = 1).

fMRI dataset
We utilized the publicly available ‘Sherlock’ dataset, in which 17 
participants viewed the same stimuli in two runs while undergo-
ing fMRI (Chen et al. 2017). The preprocessed functional images 
were downloaded from the Princeton University DataSpace repos-
itory (see the Supplementary material).
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HbO-BOLD correlation analyses
For each fNIRS channel, we computed the average HbO activity 
across participants to obtain the group-mean HbO time course. To 
identify corresponding locations in the fMRI data, we estimated 
the Montreal Neurological Institute (MNI) coordinates of each 
channel using an anchor-based probabilistic conversion atlas 
(Tsuzuki et al. 2012). We then created a spherical region of inter-
est (ROI) with a 5-mm radius centred on the MNI coordinates of 
each channel. The BOLD time courses were averaged within each 
ROI and across all participants in the fMRI sample to obtain the 
group-mean BOLD time course. We computed the Pearson corre-
lation between the group-mean HbO and BOLD time courses at 
matching locations. Statistical significance was assessed using a 
nonparametric permutation test where the empirical correlation 
coefficient was compared against a null distribution generated by 
repeating the analysis with phase-randomized group-mean BOLD 
time courses, as implemented in the ‘nltools’ package. A right-
tailed P-value was calculated for each channel using the formula: 

𝑝 = (𝑛𝑜. 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑤ℎ𝑒𝑟𝑒 𝑟 ≥ 𝑡𝑟𝑢𝑒 𝑟) + 1
𝑛𝑜. 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 + 1

(1)

Across the 20 channels, P-values were corrected for multiple com-
parisons by controlling for the false discovery rate (FDR) at q < 0.05 
(Benjamini and Hochberg 1995).

As control analyses, we correlated each fNIRS channel with the 
group-mean BOLD time course from the primary auditory cortex, 
the primary visual cortex, and the average BOLD signal across all 
ROIs (global grey matter signal) (see the Supplementary material).

fNIRS-fMRI predictive modelling
We parcellated the fMRI data into 114 cortical ROIs follow-
ing the Yeo atlas (Yeo et al. 2011). Each cortical ROI was 
labelled with one of the seven functional networks (visual—
VIS; somatomotor—SM; dorsal attention—DAN; salience/ventral 
attention—VAN; limbic—LIMB; control—CONT; default mode—
DMN) according to Yeo et al. (2011). Subcortical regions (SUBC) 
were parcellated into eight ROIs following the subcortical nuclei 
masks of the Brainnetome atlas (Fan et al. 2016), and included 
the bilateral amygdala, basal ganglia, hippocampus, and thala-
mus. For each participant, we averaged the BOLD time courses of 
all voxels within each ROI, yielding 122 time courses.

We adapted a principal component regression (henceforth 
aPCR; Fig. 1) approach to predict the whole-brain fMRI BOLD time 
courses from fNIRS HbO time courses. During model training, 
a PCA was performed separately on the fNIRS and fMRI time 
courses in the training set to extract fNIRS and fMRI PCs captur-
ing 90% of variance in the original data (average number of PCs 
across LOO iterations: fNIRS—12.8, fMRI—49). Because the PCA 
does not allow missing values, we imputed missing values with 
the group mean (see Supplementary Methods). We then fit a linear 
regression model predicting fMRI PCs from fNIRS PCs:

Train-Test split
Model training and evaluation were performed using an LOO 
cross-validation approach where the model was trained on data 
from Run 1 and tested on data from Run 2 of a held-out fNIRS 
participant. Leaving out an fNIRS participant allowed us to eval-
uate the model’s ability to generalize to unseen fNIRS data. For 
each LOO iteration, each of the 28 remaining fNIRS participants 
was paired with each of the 17 fMRI participants, resulting in 
28 × 17 = 476 unique pairings. Data from each pairing were then 
concatenated along the time axis, such that each fNIRS partici-
pant’s data was used to predict each fMRI participant’s data in the 

aPCR model. This approach exposed the model to all possible data 
pairings, improving its ability to generalize to new participants.

Model evaluation
We tested the trained aPCR models on the Run 2 fNIRS time course 
of the held-out participant. In other words, the model was tested 
on data from a participant and a part of the movie that was not 
in the training data, allowing us to test whether the model gener-
alized to new participants and unseen stimuli. For each LOO iter-
ation, the model’s output consisted of the predicted time courses 
for the fMRI PCs, which were then back-projected to the original 
ROI space by inverting the PCA transformation, resulting in pre-
dicted BOLD time courses for 122 ROIs. For each ROI, we computed 
the average predicted fMRI time course across all LOO iterations 
and then correlated this average predicted time course with the 
average fMRI time course from the real data as our measure 
of predictive accuracy. Statistical significance was assessed by 
comparing the true correlation values against a null distribution 
generated by repeating the correlation 1000 times with phase-
randomized average fMRI time courses. P-values were computed 
following Equation (1) and corrected for multiple comparisons 
across the 122 ROIs by controlling for FDR at q < 0.05.

To contextualize model performance, we also computed the 
proportion of the noise ceiling (PNC) captured by the model for 
each ROI. Cronbach’s α was calculated from the Run 2 fMRI 
time courses across participants as an estimate of the maximum 
expected model performance given intersubject variability and 
measurement noise (Jiahui et al. 2020). As Cronbach’s α reflects 
shared variance (r2), we took the square root to obtain a ceiling in 
correlation (r) space, and divided the model’s Pearson r by 

√
𝛼 to 

compute the PNC.
To assess model accuracy by functional network, we grouped 

the 122 ROIs into the seven cortical networks defined by the Yeo 
atlas and one subcortical network that included all subcortical 
ROIs. For each network, we computed the proportion of signifi-
cant ROIs and the median model performance. We computed the 
median correlation value as it does not require Fisher transforma-
tion to normalize the distribution of correlation coefficients (Chen 
et al. 2016), and is a measure of model performance that relies on 
fewer assumptions.

Intersubject functional connectivity analyses
To examine whether model predictions recapitulated whole-brain 
patterns of functional correlations, we compared intersubject 
functional connectivity (ISFC) patterns between the observed and 
predicted fMRI time courses for Run 2. We first calculated the 
Pearson correlation between the time course of one ROI for that 
participant and the time course of another ROI across all other 
participants. This process was repeated pairwise for every pair of 
ROIs, and then repeated across all participants. We then com-
puted the median correlation value for each pair of ROIs. This 
procedure was performed separately for the observed and pre-
dicted fMRI time courses, resulting in two average ISFC matrices. 
The diagonal of an ISFC matrix reflects the ISC of each ROI and 
was excluded from all ISFC analyses. As an ISFC matrix is not 
symmetrical along the diagonal, we followed Simony et al. (2016) 
and averaged the corresponding cells in the upper and lower tri-
angles to obtain a single value representing the ISFC between two 
regions. We computed the Pearson correlation between predicted 
and observed ISFC, with statistical significance assessed using a 
nonparametric Mantel test (Mantel 1967, Kriegeskorte et al. 2008).
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Figure 1. Model training and evaluation. The aPCR model was trained and tested following an across-run, LOO approach. Training involved applying 
separate PCAs to extract PCs capturing 90% of the variance in the fNIRS and fMRI data. Linear regression was then used to predict fMRI PCs from 
fNIRS PCs. Training data consisted of Run 1 data from all but one fNIRS participant and all fMRI participants. Testing data consisted of Run 2 data 
from the held-out fNIRS participant. Model performance was evaluated by comparing the average predicted fMRI time courses with the group mean 
fMRI time courses using Pearson’s correlation.
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fNIRS predicts whole-brain activity  5

Figure 2. fNIRS and fMRI time courses at matching locations were correlated during movie-watching. (a) Location of 20 fNIRS channels. (b) Brain maps 
show the Pearson r between the 20 fNIRS channels and corresponding fMRI ROIs in the PFC, thresholded at FDR q < 0.05. Statistical significance was 
computed using a phase-randomized permutation test. Of the 20 fNIRS channels, 18 exhibited significant correlation with the corresponding fMRI ROI. 
**q < 0.01; *q < 0.05.

Semantic encoding models
We obtained detailed annotations of the movie content provided 
by Chen et al. (2017). These annotations divided the movie into 
50 scenes spanning 1000 segments, with annotations describing 
what happened during each segment (e.g. Sherlock picks up a 
small pink suitcase from a chair and brings it back into the liv-
ing room). The annotation of each segment was converted into a 
512-dimensional vector embedding using the Universal Sentence 
Encoder (Cer et al. 2018). To align these segment embeddings with 
the fMRI data, we resampled the embeddings to match the TR of 
the fMRI scans. The segment embedding of TR t is denoted as SEGt.

To capture the preceding context of a sentence, we constructed 
a context embedding that models the accumulation of semantic 
information over time. This context embedding, CTX, was initial-
ized at zero at the beginning of each scene, reflecting the reset 
of context at event boundaries (Zacks et al. 2007, Pu et al. 2022). 
At each TR t, CTXt was updated to be the average of CTXt − 1

and SEGt − 1. CTXt was then concatenated with SEGt, resulting in 
a 1024-dimensional vector that reflects the semantic content of 
both the previous context and the current input. Our goal was to 
fit encoding models that map semantic information to observed 
and predicted fMRI data (Naselaris et al. 2011, Deniz et al. 2019, 
Caucheteux et al. 2023). To prevent overfitting, we reduced the 
1024-dimensional vector to 32 dimensions using PCA (Tikochinski 
et al. 2023, 2025). We refer to the resulting 32-dimensional vector 
as the TR’s semantic embedding, or SEMt.

Consistent with our leave-one-run-out testing approach, PCA 
was fit to semantic embeddings from Run 1. Analyses were lim-
ited to the 66 out of 122 ROIs where the fNIRS-fMRI model 
with above-chance prediction performance. Following previous 
work by Caucheteux and colleagues (2023), we fit a ridge regres-
sion model (𝛼 = 100) to predict the observed average ROI’s time 
course from the 32-dimensional SEM vectors from the observed 
Run 1 BOLD time courses. We then tested the model on the 
observed and predicted BOLD time course from Run 2. Statisti-
cal significance was assessed by retraining the encoding model 

on phase-randomized observed Run 1 BOLD time courses and 
applying the retrained model to the test data. This procedure 
was repeated 1000 times to generate a null distribution, with P-
values computed following Equation (1) and controlling for FDR 
at q < 0.05.

Results
Correlation between fNIRS and fMRI time 
courses during movie-watching
We used fNIRS to scan 29 participants as they watched a 48-
min segment of a television episode. We also utilized a publicly 
available fMRI dataset where participants viewed the same seg-
ment. In both datasets, the segment was divided into two runs. 
To examine the extent to which fNIRS activity matched fMRI 
activity, we correlated the group-mean HbO time courses of the 
20 fNIRS channels with group-mean fMRI BOLD time courses at 
corresponding locations. Of the 20 ROIs, 18 showed significant 
correlation between the group-mean BOLD time course and the 
matching group-mean HbO time course (median r = 0.204, FDR 
q < 0.05; Fig. 2; Supplementary Table S1). These results indicate 
that the hemodynamic responses captured by fNIRS mirrored the 
neural dynamics measured using fMRI as participants watched 
the same movie. 

As control analyses, we also computed the correlation between 
each group-mean HbO time course with group-mean BOLD time 
course at the primary auditory cortex, primary visual cortex, 
and the global grey matter signal derived by averaging BOLD 
activity of all voxels across all ROIs. None of the 20 channels 
were significantly correlated with the three control time courses 
(FDR q > 0.05; median r: primary auditory cortex = 0.012, primary 
visual cortex = 0.024, global grey matter signal = 0.028; see Sup-
plementary Table S2 for correlation values of each ROI), indicating 
spatial specificity in the correlation between fNIRS and fMRI time 
courses.
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Figure 3. Model performance of the fNIRS-fMRI predictive model. (a) Brain maps showing correlation between average observed BOLD fMRI time 
courses and average predicted BOLD fMRI time courses, thresholded at FDR q < 0.05. LPFC: lateral PFC, MPFC: medial PFC, PCC: posterior cingulate 
cortex, IPS: intraparietal sulcus, IPL: intraparietal lobules; TPJ: temporal parietal junction. (b) Predictive accuracy by functional network. Height of bar 
graphs indicates median r with circles indicating individual ROIs. Fractions denote the proportion of ROIs significant within a network. See the 
methods for labels of individual networks.

Predicting whole-brain fMRI signal from 
prefrontal fNIRS
We trained our aPCR model on the 20 prefrontal fNIRS chan-
nels to predict whole-brain fMRI time courses (see ‘Methods’). The 
model significantly predicted Run 2 fMRI time courses in 66 out 
of the 122 ROIs (q < 0.05; Fig. 3a; see Supplementary Fig. S1 for 
PNC map). These regions included prefrontal areas covered by 
the fNIRS channels, including the dorsolateral PFC (left: r = 0.30, 
PNC = 0.33; right: r = 0.29, PNC = 0.33), dorsomedial PFC (dmPFC; 
left: r = 0.45, PNC = 0.49; right: r = 0.44, PNC = 0.49), ventrolateral 
PFC (left: r = 0.38, PNC = 0.45; right: r = 0.36, PNC = 0.43), and ven-
tromedial PFC (left: r = 0.22, PNC = 0.29; right: r = 0.20, PNC = 0.27), 
as well as in temporal and parietal regions not covered by 
the fNIRS channels, including the precuneus/posterior cingulate 
(left: r = 0.29, PNC = 0.32; right: r = 0.26, PNC = 0.28), temporal 
parietal junction (TPJ; left: r = 0.38, PNC = 0.40; right: r = 0.38, 
PNC = 0.40), intraparietal lobules (left: r = 0.39, PNC = 0.44; right: 
r = 0.36, PNC = 0.41), intraparietal sulcus (left: r = 0.30, PNC = 0.32; 
right: r = 0.30, PNC = 0.33), lateral temporal cortex (left: r = 0.50, 
PNC = 0.52; right: r = 0.44, PNC = 0.46), and the temporal poles 
(left: r = 0.21, PNC = 0.29; right: r = 0.26, PNC = 0.34). Among SUBC, 
model performance was significantly above chance in the basal 
ganglia (left: r = 0.15, PNC = 0.19, right: r = 0.18, PNC = 0.24). Model 
performance was highest in the default mode network (DMN; 
median r = 0.30, PNC = 0.35; percentage significant ROIs = 84.6%) 
and control network (CONT; median r = 0.296, PNC = 0.327; per-
centage significant ROIs = 80.8%; Fig. 3b). In contrast, model per-
formance was lowest in the somatomotor network (SM; median 
r = 0.027, PNC = 0.036; percentage significant ROIs = 0%).

We further compared ISC in the predicted and observed fMRI 
data (Supplementary Fig. S2). Both datasets showed high ISC 
in default mode and control network regions, consistent with 
the model capturing shared, high-level responses to the movie. 
In contrast, ISC was substantially lower in primary visual and 
auditory cortices in the predicted data, likely reflecting the 

limited ability of prefrontal fNIRS to track low-level sensory
features.

Predicted ISFC patterns from prefrontal fNIRS
To further explore the utility of prefrontal fNIRS data in captur-
ing whole-brain dynamics, we examined whether the predicted 
fMRI time courses could recapitulate ISFC patterns. ISFC com-
putes functional connectivity across participants and reflects 
the pattern of whole-brain functional correlations elicited by a 
shared stimulus (Simony et al. 2016). ISFC computed from the 
observed BOLD was significantly correlated with ISFC computed 
from the predicted BOLD (r = 0.42, P < .001; Fig. 4), indicating that 
the predicted BOLD successfully reproduced patterns of stimulus-
driven functional correlations observed in the actual fMRI
data.

Assessing semantic information encoded in 
predicted BOLD
We fit a neural encoding model to predict the observed Run 1 
BOLD time courses from semantic embeddings of the movie con-
tent (see ‘Methods’). When evaluated on observed BOLD data in 
Run 2, the encoding model had above-chance accuracy in 51 
out of the 66 ROIs where the fNIRS-fMRI model exhibited signif-
icant predictive accuracy (FDR q < 0.05; Fig. 5a), indicating that 
the observed BOLD time courses encode information about the 
semantic content of the movie. Next, to assess whether the pre-
dicted BOLD time courses retained this semantic information, we 
tested the same encoding model on the Run 2 predicted BOLD 
time courses. Model accuracy was above chance in 12 out of the 
66 ROIs (FDR q < 0.05; Fig. 5b), including the dorsomedial PFC and 
the network of brain regions that constitute the language network 
(i.e. dorsolateral PFC, lateral temporal cortex) (Fedorenko et al. 
2024). These results suggest that the predicted BOLD time courses 
retained semantic information of the movie content encoded in 
the original BOLD signal during movie viewing.
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Figure 4. ISFC matrices computed from A. observed and B. predicted BOLD. Each cell denotes the median ISFC of a pair of ROIs. The correspondence 
between the two ISFC matrices is computed using a Mantel test. For our analysis, we averaged the top and bottom triangles of the ISFC matrices and 
excluded the diagonal such that each pair of ROIs is only considered once.

Figure 5. Prediction accuracy of the semantic encoding model. An encoding model was trained to predict Run 1 BOLD responses from semantic 
embeddings of the movie content. (a) Prediction accuracy of the model on Run 2 observed BOLD responses. (b) Prediction accuracy of the model on 
Run 2 predicted BOLD responses. Statistical significance was assessed by retraining the encoding model on phase-randomized training data. Brain 
maps are thresholded at FDR q < 0.05.

Cross-stimulus generalization to a different 
movie
To test whether the model generalizes to a different stimulus, 
we applied it to an independent fNIRS dataset in which partici-
pants watched an episode of a different TV series (‘Friday Night 
Lights’; see the Supplementary material). The model significantly 
predicted fMRI activity from a separate group of participants who 
watched the same episode. A model trained on Run 1 of ‘Sherlock’ 
significantly predicted fMRI activity in 66 ROIs (Fig. 6a), while a 
model trained on both runs significantly predicted fMRI activity 
in 84 ROIs (FDR q < 0.05; Fig. 6b).

Discussion
We developed a predictive model that maps prefrontal fNIRS 
activity to whole-brain fMRI activity while participants viewed 
audio-visual movies. Our model significantly predicted fMRI 
time courses above chance in a substantial number of brain 
regions, including areas not typically accessible by fNIRS, such 
as the precuneus, temporal poles, and basal ganglia. Further-
more, an encoding model trained to predict observed fMRI data 
from semantic embeddings showed above-chance accuracy when 
applied to the predicted fMRI time courses generated by our 
model, suggesting that the model-generated fMRI time courses 

D
ow

nloaded from
 https://academ

ic.oup.com
/scan/article/20/1/nsaf043/8123738 by The C

larem
ont C

olleges Library user on 08 August 2025



8  Gao et al.

Figure 6. Model performance of the fNIRS-fMRI predictive model on an independent dataset (‘Friday Night Lights’). (a) Predictive accuracy when the 
model is trained on fNIRS and fMRI data from Run 1 of ‘Sherlock’. (b) Predictive accuracy when the model is trained on fNIRS and fMRI data from both 
runs of ‘Sherlock’. Predictive accuracy is measured as the correlation between predicted and observed fMRI time courses, thresholded at FDR q < 0.05. 
Brain plots show significant ROIs (r-values) projected onto cortical and subcortical surfaces. Bar plots show median r for each network with individual 
ROI r-values overlaid as grey dots. Fractions above each bar denote the number of significant ROIs over total ROIs within each network.

retained semantic information encoded in fMRI activity. Overall, 
our findings demonstrate the feasibility of using fNIRS to infer 
broader brain activity patterns, opening up new possibilities for 
investigating brain function during complex, real-world contexts.

Model accuracy was highest in the default mode network and 
control network, both of which are critically involved in higher-
order cognitive functions (Raichle 2015, Gratton et al. 2018, Menon 
and D’Esposito 2022). This suggests that the current model may be 
well suited for investigating cognitive processes that rely on these 
networks, including social cognition, cognitive control, introspec-
tion, and memory retrieval. Conversely, model prediction accu-
racy was lowest in the somatomotor network. This discrepancy 
is likely due to the nature of the task we employed rather than 
a limitation of the approach. Watching a movie does not involve 
tactile stimulation or movement and is thus unlikely to engage 
somatomotor areas. Future work can potentially expand the cov-
erage of our model by incorporating paradigms that engage the 
somatomotor network (e.g. playing an instrument).

It is important to note that our approach approximates neural 
activity based on functional correlations, and highly connected 
areas may serve related but distinct functions. For example, the 
dmPFC and TPJ are both part of the default mode network and 
are often coactivated during social interaction, but may support 
distinct processes (Saxe 2006, Van Overwalle 2009, Konovalov 
et al. 2021). It is unclear whether our model captures the level 
of granularity needed to differentiate between the distinct roles 
of such interconnected regions. Instead, we see the utility of our 
model as a tool for generating hypotheses about broader patterns 
of brain activity that can guide future investigations with fMRI. 
For instance, if fNIRS data collected during classroom instruc-
tion predicts joint activation in dmPFC and TPJ, it could suggest 
their involvement in social learning. This could then motivate 
a targeted fMRI study using curated clips of classroom interac-
tions that vary in types of social ambiguity, to test whether these 
regions support distinct processes such as belief attribution or 
uncertainty monitoring.
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fNIRS predicts whole-brain activity  9

Our approach shares similarities with functional alignment 
techniques, such as hyperalignment (Haxby et al. 2011, 2020) and 
the Shared Response Model (SRM; Chen et al. 2015). These meth-
ods aim to align neural responses across individuals to a common 
representational space via a shared stimulus. Our approach is 
similar in that we leverage the shared neural dynamics elicited 
by naturalistic stimuli to align neural responses. However, it is 
unique in that it aligns responses collected using different neu-
roimaging modalities, each with different spatial resolutions and 
coverage. Using this approach, we were able to predict the aver-
age fMRI time course of participants watching an unseen stimulus 
based on fNIRS data from a different participant. We further show 
that the model generalizes to an independent dataset of partici-
pants watching an episode from a different TV series, suggesting 
it captures robust cross-modal mappings that can be applied 
broadly without retraining. We note that all datasets consisted 
of college-aged adults. As the model relies on functional con-
nectivity profiles, which are known to vary across the lifespan 
(Geerligs et al. 2015), future work will be needed to assess its 
generalizability to different age groups.

As our model learns a group-level mapping between fNIRS 
and fMRI, it only captures responses that are consistent across 
individuals. However, some brain regions tend to exhibit more 
idiosyncratic responses. For example, ventromedial prefrontal 
cortex (VMPFC) responses tend to be idiosyncratic when partic-
ipants watch a TV episode (Chang et al. 2021). Similarly, we 
previously showed that VMPFC responses while processing social 
situations are modulated by individual differences in social beliefs 
(Lyu et al. 2024). In line with these findings, the accuracy of our 
fNIRS-fMRI model was lower in the VMPFC relative to other pre-
frontal regions. Measuring the same individual watching the same 
video using both fNIRS and fMRI may enable the development 
and validation of individual-specific models. These personalized 
models could then be used to predict fMRI activity from fNIRS 
data of the participant performing tasks that are not amenable 
to fMRI. If this approach proves effective, incorporating a movie 
stimulus into fMRI scans could be a worthwhile strategy to allow 
for the alignment of an individual’s brain across modalities. This 
direction aligns with the individualized neural tuning framework 
(Feilong et al. 2023), which learns subject-specific mappings from 
shared stimuli and could inspire future extensions of our model.

To examine the information content encoded in the predicted 
fMRI signal, we utilized text embedding models, which convert 
text into high-dimensional representations of semantic meaning. 
Consistent with prior work, we demonstrated that an encod-
ing model trained to predict BOLD time courses from semantic 
embeddings of the movie content exhibited above-chance accu-

racy, confirming that the BOLD time courses captured semantic 
information (Huth et al. 2016, Pereira et al. 2018, Caucheteux et al. 
2023). Importantly, this encoding model showed above-chance 
accuracy when applied to the BOLD time courses generated by our 

fNIRS-fMRI model, with the highest prediction accuracy observed 
in the dorsolateral PFC, dorsomedial PFC, and lateral temporal 
cortex, which are known to support language processing and nar-

rative interpretation (Leong et al. 2020, Yeshurun et al. 2021, 
Fedorenko et al. 2024). These results suggest that the predicted 

BOLD retains content-specific information about participants’ 
cognitive experiences, highlighting the potential of using our 
approach to study how the brain encodes complex, naturalistic 
experiences in real-world contexts where fMRI is not feasible.

The overarching objective of our project is to develop a tool that 
enhances the versatility of fNIRS. To that end, we have made our 
models publicly available at https://github.com/ycleong/fNIRS-

fMRI_models. We are committed to the continued development 
of this tool, including training and validating our models on addi-
tional stimuli and tasks. We also invite the fNIRS community 
to utilize and contribute to this tool, with the goal of enhanc-
ing the utility of fNIRS and facilitating its application in studying 
complex, real-world behaviours.
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